
Safety through quality

Document ID: MC-WP-002 Eight coverage questions v8 Copyright © Rapita Systems Ltd. All rights reserved.INDT-v10

Eight top code coverage questions for DO-178B/C

W H I T E P A P E R

 Eight top code coverage questions | page i

Contents
1. Introduction 1

2. Top code coverage questions 2

 2.1 What is code coverage? 2

 2.2 Should we do on-target or on-host code coverage? 4

 2.3 What are the challenges to on-target code coverage, and how can we
 overcome them? 6

 2.4 How can I use my code coverage results to
 support certification 6

 2.5 What additional benefits come from measuring on-target? 7

 2.6 How do I combine results from multiple tests? 7

 2.7 How do I deal with missing code coverage? 8

 2.8 What should I look for in a code coverage tool? 8

3. Product summary: RapiCover 9

 3.1 Reduced timescales by running fewer on-target tests 9

 3.2 Reduced risk through greater tool flexibility 10

 3.3 Reduced effort for certification activities 11

4. About Rapita Systems 13

 4.1 RVS 13

 4.2 Early Access Program 13

5. Appendix: overview of code coverage criteria 14

 5.1 Function Coverage 14

 5.2 Call Coverage 15

 5.3 Statement coverage 15

 5.4 Decision coverage 16

 5.5 Modified condition/decision coverage (MC/DC) 17

page 1 | Eight top code coverage questions

Supporting the test process with measurements of structural
code coverage is a key activity for DO-178B/C compliance
during the development of software for airborne systems. In
this white paper we consider eight key questions:

• What is code coverage and how does it benefit my project?

• Should we do on-target or on-host coverage?

• What are the challenges to on-target code coverage and how can we
overcome them?

• How can I use my code coverage results to support certification?

• What additional benefits are derived from measuring on-target?

• How do I combine results from multiple tests?

• How do I deal with missing code coverage?

• What should I look for in a code coverage tool?

After we have addressed these eight key questions, we introduce RapiCover, a software
tool designed to efficiently perform structural coverage analysis on code running on
an embedded target. The benefits of using RapiCover to conduct structural coverage
analysis on an embedded target include:

• Reduced timescales by running fewer on-target tests. Very lightweight
instrumentation means more coverage information per test cycle.

• Reduced risk through greater tool flexibility. Adapt RapiCover to work with
your system, rather than adapting your system to work with another tool. Collect
coverage information via a wide variety of mechanisms, making it easier to integrate
RapiCover into your system.

• Reduced effort for certification activities. Automatic combination of results from
multiple test runs and the ability to justify missing coverage makes the preparation
of coverage quicker.

The Rapita Systems

blog addresses topics

related to on-target

verification, including

code coverage and

DO-178B/C.

rapitasystems.com/

blog

Keep up to date

1. Introduction

https://www.rapitasystems.com/blog
https://www.rapitasystems.com/blog

Eight top code coverage questions | page 2

2.1 What is code coverage and how does it
benefit my project?

Structural coverage analysis is an important verification tool
for establishing the completeness of testing.

DO-178B/C emphasises the use of requirements-based testing as an important part
of the software verification process. In requirements-based testing, the high and
low-level requirements are used to derive source code and the tests for that source
code. Traceability between the requirements, the test cases and the source code
demonstrates:

• Every requirement has a test case.

• All source code is traceable to a requirement.

Measuring code coverage when the test cases are executed is essential for this
process – where coverage is less than 100%, this points to code that is not traceable
to requirements, tests or both.

Different coverage criteria (see table on page 3) allow the degree of rigor in measuring
the coverage to reflect the Development Assurance Level (DAL) of the system.

2. Top code coverage questions

Can it support all

classes of code

coverage? Can it

support different

variants such as

masking v. non-

masking MC/DC?

What to look for in a
code coverage tool:

page 3 | Eight top code coverage questions

 Table 1. Types of coverage

Measurement Description Notes

Function coverage Each function has been
called at least once

Not required by DO-178B/C

Call coverage Each function has been
called at least once, and
each different function call
has been encountered at
least once

Not required by DO-178B/C

Statement coverage Each statement in the code
has been encountered at
least once

Required for DO-178B/C
Level A, B, C

Decision coverage Each decision (see box on
next page) in the code has
evaluated true at least once
and evaluated false at least
once, and each function
entry and exit point has
been encountered at least
once

 Required for DO-178B/C
level A, B

Condition coverage Each condition (see box on
next page) in the code has
evaluated true at least once
and evaluated false at least
once

Not required by DO-178B/C

Modified Condition/
Decision Coverage

Decision coverage plus
each condition has been
shown to independently
affect the outcome of its
enclosing decision

Required by DO-178B/C
Level A

RTCA DO-178B/C

(also referred to as

EUROCAE ED-12B)

provides guidance for

specific considerations

for airborne

software. It calls for

demonstration of

code coverage to a

level determined by

the criticality of the

application under

consideration. The

table (right) lists a

number of coverage

criteria used to assess

software testing

effectiveness. The

coverage criteria

are defined in the

Appendix (page 14).

DO-178B/C and
code coverage

Where code is well-structured and derived directly from well-written requirements and
architecture, then a full set of high- and low-level requirements-based tests is entirely
capable of meeting many of the existing code coverage criteria.

 Eight top code coverage questions | page 4

Can it do on-host and

on-target testing?

What to look for in a
code coverage tool:

2.2 Should we do on-target or on-host code
coverage?

When developing software for an embedded application, such as an avionics system,
verification activities can be performed on-host or on-target. On-target testing means
the application is tested on the hardware to be deployed (the target). It may also be
referred to as host-target testing or cross-testing. On-host testing means testing the
application on a host computer (such as the development system used to build the
application). This may also be referred to as host-host testing.

2.2.1 On-target testing

The key principle behind testing an application on-target is that code is executed in the
environment for which it was designed, rather than in an environment where it was
never intended to be executed. Test results are typically evaluated and analysed on a
host. This has the following benefits:

• The “credibility gap”, the possibility that some unanticipated difference exists
between executing on-host in a harness and executing on-target, is minimized.
This results in a lower likelihood of false-negative errors leading to errors not being
detected, and faulty software being deployed, and of false-positive reports where
time is wasted tracking down non-existent problems.

What are conditions and decisions?

A condition is a Boolean expression that contains no Boolean
operators. Examples of conditions are: “true”, “iterations > 5” or
the name of a Boolean variable, such as “MaintenanceMode”. If the
same Boolean expression is repeated several times, each specific
instance is a different condition.

A decision is a combination of at least one condition with zero or more
Boolean operators to create an overall Boolean expression.

To illustrate the differences, consider:

if (A) { // “A” is a condition and a

 ... // decision

} else if (B && x < 14) { // “B” is a condition,

 // “x < 14” is a condition,

 // “B && x < 14” is a decision

 A = !(x > 14); // “x > 14” is a condition

 // “! (x > 14)” is a decision

page 5 | Eight top code coverage questions

• The smaller “credibility gap” also makes it easier to provide an argument to
certification authorities that testing achieves an appropriate level of rigor.

• Ability to execute all code. Some parts of your code might not be possible to run

on host (for example, device specific code).

2.2.2 On-host testing

On-host testing involves compiling the application code to run on the host processor,
rather than the target processor. Typically the application also requires a certain amount
of adaptation to work in the host environment due to the following considerations:

• Running under a desktop OS rather than the target’s RTOS may require different
API calls.

• If the embedded applicationincludes libraries, these may not be available on the
host (or may be different, for example, in the case of graphics libraries).

• Alternative interpretations of ambiguous/undefined programming language
features or compiler bugs may cause different behaviors between the host and
the target.

• The embedded application may require access to specific hardware features that
are not available on the host system.

However, there are benefits that can arise from on-host testing:

• The target may not be available, or there may be only limited access to it when
testing needs to take place.

• The “build-deploy-analyze” cycle may be quicker than on-target testing.

• It is well suited to unit testing – a test harness can be used to achieve 100%
coverage, even when defensive programming techniques are used.

2.2.3 What to choose?

The choice between on-host and on-target testing is driven by a trade-off between
cost/convenience and credibility of results.

In many cases, using a combination of both techniques offers dual benefits:

• Unit testing and test case development on-host gives the advantages of rapid
turnaround;

• System/integration testing on-target provides the confidence that the code to be
deployed has been tested in its intended environment.

 Eight top code coverage questions | page 6

2.3 What are the challenges to on-target
code coverage, and how can we
overcome them?

One of the biggest challenges to on-target code coverage is resource limitations in
embedded systems. The standard approach to measuring coverage is to instrument
source code to write tags into a memory buffer.

This approach evolved from host-based testing – it is clear that many commercially
available code coverage solutions today begin with a host-based approach
and attempt to transfer it to an embedded environment. This approach
requires a large RAM buffer to store the data in, and each instrumentation
point requires a large number of instructions (increasing execution time and
increasing code size). On a resource-constrained platform this represents
a difficulty.

The exact nature of resource constraints varies between systems. Data areas might
be limited or code size constrained. On other systems high CPU utilization might limit
what could be achieved. A code coverage solution has to recognize these limitations
can exist, and to provide a viable route to dealing with them.

There are a number of ways to address resource constraints:

• Alternative data collection. In many cases, using an in-memory data structure
to record coverage will be sufficient. However, when there is not enough room
to store this data structure, or if the execution overhead of this approach is too
high, alternative approaches need to be available. One such approach involves
recording a trace of instrumentation points via an I/O port. This avoids the need
for a large area of memory and simultaneously makes instrumentation overheads
very low, typically 1-2 machine instructions. Advanced debuggers (e.g. Nexus or
ARM ETM-based tracing debuggers) can also be used to collect data.

• Partial instrumentation. Rather than completely instrumenting an application,
instrument specific parts of it, perform the tests and combine the results to
provide an overall picture.

• Optimized instrumentation. Measuring certain types of coverage, for example
MC/DC, can require significant memory overheads. Instrumenting an embedded
system for coverage requires knowledge of how instrumentation is carried out.
Once set up, there are opportunities to make trade-offs between exactly how the
level of coverage is achieved, and the amount of instrumentation required.

2.4 How can I use code coverage results to
support certification?

If evidence of code coverage is mandatory for the project, for example because the
customer requires strict adherence to DO-178B/C guidance, it’s also important to be
able to provide evidence that the process used to collect the data has worked correctly.

What to look for in a
code coverage tool:

Can it adapt to

different embedded

environments?

Can it cope with

low memory

environments? Will

it support partial

instrumentation and

provide the ability to

combine results?

page 7 | Eight top code coverage questions

The evidence must show that the tool works correctly within the context of the
development environment for which it is producing results. In the case of DO-178B/
DO-330, the following items are recommended for tool qualification:

• PSAC (Plan for Software Aspects of Certification). This references the TQP and TAS
(see below).

• TOR (Tool Operational Requirements). This describes what the tool does, how it is
used and the environment in which it performs.

• TAS (Tool Accomplishment Summary). This is a summary of the data showing that
all requirements in the TOR have been verified.

• TVR (Tool Verification Records). This comprises test cases, procedures and results.

• TQP (Tool Qualification Plan). This describes the process for qualifying the tool.

These items combine two main kinds of evidence:

• Generic evidence. This needs to be provided by the tool vendor to define the tool
operational requirements, and verification evidence to demonstrate that the tool
meets the requirements.

• Specific evidence. The tool user needs to demonstrate that the tool works correctly
in a specific environment. Ideally the tool vendor should provide support to simplify
this process as much as possible.

2.5 What additional benefits come from
measuring on-target?

When you instrument source code and run your application on target, you are opening
the door to collecting other information besides simply code coverage. For example,
if you collect a trace (i.e. recording the sequence of instrumentation points that are
executed), it is possible to identify which test cases execute specific execution paths.
Using the traces, it is possible to step through the code forwards and backwards.

If a trace also records the specific time at which instrumentation points are executed,
it is possible to determine timing information. For example, RapiTime uses such
information to provide a wide range of timing measurements that can be used for:

• execution time measurement;

• worst-case execution time (WCET) calculation;

• performance optimization.

2.6 How do I combine results from multiple
tests?

Your approach to testing may rely upon combining coverage results from a variety of
different tests. This could occur because:

• Your strategy includes upon a combination of on-target and on-host testing.

• You need multiple test cases reflecting different system modes.

What to look for in a
code coverage tool:

Is certification

evidence available?

Will the tool vendor

support you in

generating specific

certification evidence?

What to look for in a
code coverage tool:

Can it exploit the

effort that you’ve

put in to integrate it

with your target to

provide additional

information?

 Eight top code coverage questions | page 8

• Possibly system constraints force you to instrument one only part of your system
at a time (consider the advice in Section 2.3 to mitigate this issue).

It may be necessary to perform the coverage analysis for each of these tests individually,
and to manually merge the results.

A better approach is to use a tool that supports the combination of multiple results
into a single report.

2.7 How do I deal with missing code
coverage?

In some situations, there may be legitimate reasons for not achieving 100% code
coverage.

For example, it might not be possible to construct test cases to execute defensive
programming constructs. In this case, alternative forms of verification of this code
could be agreed upon as acceptable.

In such a situation, it is useful for any code coverage report to provide the ability to
justify uncovered code. Summary reports could then show executed code, justified
(but unexecuted code) and unjustified code. The objective should be for all code to be
either justified or executed.

2.8 What to look for in a code coverage tool
Summarizing the above, which represents knowledge collected from our work with
avionics software teams in the aerospace industry, we see that a code coverage tool
should:

• support all classes of code coverage, including the specific interpretations used by
your project;

• be capable of supporting on-host and on-target testing;

• be suitable for different embedded environments, including low memory
environments;

• support partial instrumentation;

• have certification evidence available;

• be able to collect other classes of information;

• combine coverage reports from different tests;

• support justifications for code that has not been executed.

What to look for in a
code coverage tool:

Can it combine

coverage data from

multiple test scenarios

into a single report?

What to look for in a
code coverage tool:

Is it possible to justify

why some code is

not executed, and to

report the proportion

of executed code,

justified code and

neither executed nor

justified code?

page 9 | Eight top code coverage questions

3. Product Summary: RapiCover

RapiCover is a structural coverage analysis tool designed
specifically to work with embedded targets.

RapiCover is designed to deliver three key benefits:

• Reduced timescales by running fewer on-target tests.

• Reduced risk through greater tool flexibility.

• Reduced effort for certification activities.

3.1 Reduced timescales by running fewer
on-target tests

Running system and integration tests can be time-consuming and runs the risk
of introducing schedule delays, especially if the availability of test rigs is limited. If
instrumentation overheads for code coverage are large, and system resources are
limited, obtaining coverage can only be achieved through multiple test builds. This
increases testing time, especially if additional time on test rigs needs to be negotiated.

 Eight top code coverage questions | page 10

RapiCover is designed specifically for use in resource-constrained, embedded
applications. Because there is considerable variation between embedded systems,
both in their requirements and their underlying technology, RapiCover provides a
range of highly-optimized solutions for the instrumentation code it generates. This
flexibility allows you to make the best use of the resources available on your platform.

This results in best-in-class instrumentation overheads for an on-target code coverage
tool, and consequently fewer test builds.

About instrumentation

Performing structural code analysis requires some way of identifying
which parts of the code have been executed. One of the most widely-
used approaches for this is source-code instrumentation. In this approach,
instrumentation code is inserted into the source code during the build
process. The instrumentation code is used to signal that a specific function,
line, condition or decision (depending upon the coverage type required)
has been executed. Done in a naïve way, this can negatively impact the
executable code in two ways:

• Too many instrumentation points. Adding more instrumentation points
than necessary doesn’t improve the information generated, but does
result in greater memory requirements and longer execution times.

• High overhead for each instrumentation point. If the implementation of
an instrumentation point is inefficient, this has a multiplicative effect on
the overheads of the system.

3.2 Reduced risk through greater tool
flexibility

Rather than adapting your system to work with another tool, you can adapt how
RapiCover works with your system. RapiCover also helps this flexibility by working with
a wide variety of data capture mechanisms.

An early design objective for RapiCover was to make it easy to deploy into any
development environment, whether they be highly customized, extremely complex or
legacy systems.

The two key factors to consider in a deployment of a coverage tool are: build system
integration and coverage data collection.

page 11 | Eight top code coverage questions

• Build System Integration. RapiCover is designed to work with any combination
of compiler (C, C++ or Ada), processor and real-time operating system (RTOS).
Its use of command-line tools and the ability to choose between two alternative
strategies for integrating RapiCover into pre-existing build systems ensures a
seamless integration.

• Coverage Data Collection. RapiCover is designed with the flexibility to handle
data from a wide variety of possible sources. This flexibility means that when
creating an integration with a specific target, you can select the most convenient
collection mechanism, including legacy approaches such as CodeTEST probes.
Figure 2 shows alternative data collection approaches.

To enable a rapid, high-impact integration into your development environment Rapita
Systems provide the option of a target-integration service. In this service, Rapita
Systems’ engineers will work with your team to establish an optimal integration into
your development environment. This integration will be consistent with Rapita Systems’
DO-178B/C tool qualification process, ensuring that tool qualification runs smoothly.

A RapiCover integration is based upon the RVS (Rapita Verification Suite) core
toolflow. This makes it easy to extend the integration to support other RVS components
such as RapiTime (measurement-based worst-case execution time analysis), RapiTask
(visualization of scheduling behavior) or newer developments based upon Rapita
Systems’ Early Access Program (see Section 4).

3.3 Reduced effort for certification activities
Automatic combination of results from multiple test runs and the ability to justify
missing coverage makes the preparation of coverage Software Verification Results
quicker.

A major driver for the use of code coverage is the need to meet DO-178B/C objectives.
In addition to providing options for achieving DO-178B/DO-330 tool qualification,
RapiCover also aims to make the process of gathering and presenting code coverage
results easier. This is achieved in the following ways:

Figure 2 – Data collection alternatives for RapiCover

Host Embedded Target

Simulator
RAM

CPUNexus/
ETM

Coverage
dataset

Network

Debugger

I/O portLogic Analyzer

 Eight top code coverage questions | page 12

• Multiple format report export. RapiCover provides you with the ability to
browse coverage data using our eclipse-based viewer and to export the same
information into CSV, text, XML or aligned with source code.

• Combination of reports from multiple sources. Coverage data is often
generated at multiple phases of the test program, for example: unit test, integration
test and system test. RapiCover supports the consolidation of this data into a
single report.

• Justification of missing coverage. Where legitimate reasons exist that specific
parts of the code cannot be executed, RapiCover provides an automated way
of justifying this. The summary report shows code that is executed, code that is
justified and code that is neither executed nor justified.

Figure 3 – Text export of summary report

To facilitate your use of RapiCover within a DO-178B/C project, we provide several
options for tool qualification:

• Qualification Data. This gives you access to documents necessary to support
tool qualification of RapiCover.

• Qualification Kit. In addition to the qualification data, this provides test code
and supporting framework that enables you to generate evidence that RapiCover
works correctly on your own system.

• Qualification Service. Engineers from Rapita Systems work with you to apply
the RapiCover tests to your system and to develop the necessary qualification
arguments for your certification case.

What RapiCover can
do for you

Contact us to find

out more about

RapiCover: info@
rapitasystems.com

Request a trial

version to experiece

RapiCover for

yourself:

rapitasystems.com/
trial

Stay informed

To keep informed

about RapiCover
developments (and to

receive other technical

articles in the area of

on-target verification),

sign up for our

monthly RapiTimes

newsletter:

rapitasystems.com/
newsletter

mailto:info%40rapitasystems.com?subject=
mailto:info%40rapitasystems.com?subject=
https://www.rapitasystems.com/trial
https://www.rapitasystems.com/trial
https://www.rapitasystems.com/newsletter

page 13 | Eight top code coverage questions

4. About Rapita Systems

Rapita Systems develops on-target software verification
solutions for the avionics and automotive electronics
industries. Our tools help to reduce the cost of optimizing and
verifying the timing performance of safety critical systems.

4.1 RVS
RVS (Rapita Verification Suite) provides a framework for on-target verification
for embedded, real-time software. It provides accurate and useful results
by observing software running on its actual target hardware. By providing
targeted services alongside RVS, Rapita Systems provides a complete solution
to customers working in the aerospace and automotive industries.

RVS helps you to:

• Perform timing analysis (RapiTime);

• Perform structural coverage analysis (RapiCover);

• Understand scheduling behavior (RapiTask);

• Run unit/system tests (RapiTest);

4.2 Early Access Program
We participate in many collaborative research programs, with a large variety of
organizations. This results in our development of a wide range of advanced technologies
in various pre-production stages. Rapita Systems’ customers have found access to this
technology has been very useful.

Working with us in our Early Access Program gives you the ability to use our pre-
production technology for your specific needs. Access to this technology is normally
provided through defined engineering services and gives you the opportunity to
influence the development of the technology into a product.

Early Access Program
examples

Examples of

technologies available

in Rapita Systems’

Early Access Program

include:

• ED4i. Automatic

generation of diverse

code for reliability.

• RapiCheck.

Constraint checking

of code running on an

embedded target.

• Data dependency
tool. Supports

the conversion of

sequential code for

multicore targets.

Eight top code coverage questions | page 14

5.1 Function Coverage
Of the coverage levels discussed here, function coverage is the easiest to achieve. It
demonstrates whether each function was called in some way during your tests. This
level of coverage is a reasonable indicator that the tests have exercised a representative
subset of the entire functionality of your system, without guaranteeing that every line
of code has been executed during testing. Function coverage can reveal problems
with dead code (which is an issue for DO-178B/C) or incomplete requirements-based
testing.

It can be difficult to achieve full function coverage when working with generic or
configurable components that may contain more functionality than that used by the
specific application. When this happens, however, it is relatively easy to review the
function behaviour and option selections to justify any omissions in function coverage.

The example below contains three functions: main, activity_a and activity_b.

Function coverage of this program demonstrates:

• the program started;

• the for-loop executed at least once;

• at least one of the two switch-statement cases shown was taken.

Function coverage does not, however, reveal:

• whether both of the two switch-statement cases shown were taken;

• whether activity_a ever returned from within its own loop;

• whether activity_b ran any iterations of its loop.

5. Appendix: overview of code
coverage criteria

main.c

void main(void) {
 ...
 for (i = 0; i < N; i++) {
 switch (msg[i]) {
 case 0:
 activity_a();
 activity_b();
 break;
 case 1:
 activity_b();
 activity_a();
 break;
 }
 }
}

activity.c

void activity_a(void) {
 ...
 while (x > 0) {
 if (y < 0) {
 return;
 }
 ...
 }
 ...
 return;
}

void activity_b(void) {
 ...
 while (x > 0) {
 ...
 }
 return
}

Figure 4 – Function Coverage example

page 15 | Eight top code coverage questions

5.2 Call Coverage
Call coverage represents a slight increase in complexity over function coverage. The
term “call coverage” can actually be used to refer to two slightly different types of
coverage:

• Call-pair coverage. A call pair is the combination of a statement in one program
unit (typically procedure, function or method) calling to another program unit (the
callee). Call-pair coverage shows which of these pairs are exercised by a given set
of tests.

• Call site coverage. A call site is the point in the program text from which the call
is made. Call site coverage shows whether all such points have been exercised.

The two approaches are equivalent if each caller can only call one program unit, that is
if no caller uses function pointers, dynamic dispatching or any similar method.

It is important to locate particular statements rather than performing the analysis at
the level of entire program units, because there could be multiple calls made to a
particular unit from another particular unit. The following figure shows an example of
program structure and identified call pairs:

Support for call-pair
coverage

When function

pointers are used,

detecting which call

sites are responsible

for calling specific

functions is difficult

when using an

“array of booleans”.

A side effect of

collecting a trace

of instrumentation

points is that call pair

coverage between

function pointers and

functions can easily be

detected.

activity.c

void activity_a(void) {
 ...
 while (x > 0) {
 if (y < 0) {
 return;
 }
 ...
 }
 ...
 return;
}

main.c

void main(void) {
 void (*fp_act)(void);
 ...
 for (i = 0; i < MSG_SIZE; i++) {
 switch (msg[i]) {
 case 0:
 activity_a();
 activity_b();
 break;
 case 1:
 activity_b();
 (*fp_act)();
 break;
 }
 }
}

void activity_b(void) {
 ...
 while (x > 0) {
 ...
 }
 return
}

KEY
call site
call pairs

Figure 5 – Call Coverage example

5.3 Statement Coverage
To achieve statement coverage, it is necessary for each statement in the source code
to have been executed by at least one test in the test suite. If a particular statement
cannot be covered, it is important to identify why. This may reveal dead code, for
example, or it may be code that cannot be traced to a requirement or architectural
structure.

 Eight top code coverage questions | page 16

Statement coverage is particularly useful when dealing with loops
and returns. Consider our example code again:

Statement coverage reveals the answers to questions such as:

• Did every branch of the switch-statement get executed at least
once?

• Did each while-loop run at least once?

• Did the code within each if-statement run at least once?

In particular, for this program, statement coverage could determine
whether testing was sufficient to show that the first return statement
in activity_a was executed.

activity.c
void activity_a(void) {
 ...
 while (x > 0) {
 if (y < 0) {
 return;
 }
 ...
 }
 ...
 return;
}

void activity_b(void) {
 ...
}

5.3 Decision Coverage
Decision coverage criteria assess the ability of a set of tests to adequately exercise the
routes through the logic of a program. They are derived solely from the structure of
the code.

The code example contains two decisions. The first governs the while-loop at line four,
and the second is the expression for the if-statement at line eleven.

For decision coverage, the typical criterion is that execution has reached every point of
entry and exit in the code, and that for each decision in the source code that decision
has resulted in each possible outcome (true, false) at least once. For the example code,
this would mean:

• entry into function sin_a_1000 reaches line 4;

• function sin_a_1000 has exited on line 13 at least once;

• function sin_a_1000 has exited on line 17 at least once;

• the expression governing the while-loop was true at least once, meaning that
there was at least one non-sentinel entry in Sin_Graph and the loop body was
executed;

• the expression governing the while-loop was false at least once, meaning that a
sentinel entry was found in Sin_Graph and execution skipped to the bottom of
the loop;

• the expression governing the if-statement was true at least once, meaning that the
lookup value was located within one of the interpolation regions for at least one
test;

• the expression governing the if-statement was false at least once, meaning that
there is at least one run for which the lookup value was not in every region of
Sin_Graph.

Figure 6 – Statement Coverage example

page 17 | Eight top code coverage questions

5.5 Modified condition/decision coverage
(MC/DC)

Modified condition/decision coverage (MC/DC) extends decision coverage. Instead
of just examining the outcome of each decision, the coverage check also shows that
for each condition in the source code, that condition has resulted in each possible
outcome (true, false) at least once, and also that each condition in a decision has been
shown to independently affect that decision’s outcome.

The additional checks for MC/DC for the example program show:

• The value of v>=x1 has been true at least once.

• The value of v>=x1 has been false at least once. In the below report, we see that
this is not the case.

• The value of v<x2 has been true at least once.

• The value of v<x2 has been false at least once.

• The value of v>=x1 independently affected the outcome of the whole expression,
meaning that it has taken values of true and false while the value of v<x2 was true.

• The value of v<x2 independently affected the outcome of the whole expression,
meaning that it has taken values of true and false while the value of v>=x2 was true.

Decision coverage example

1 int sin_a_1000 (int v)

 2 {

 3 int Interpolate_Index = 0;

 4 while (Sin_Graph[Interpolate_Index+1].x != Sin_Graph_

Sentinel)

 5 {

 6 int x1 = Sin_Graph[Interpolate_Index].x;

 7 int y1 = Sin_Graph[Interpolate_Index].y;

 8 int x2 = Sin_Graph[Interpolate_Index+1].x;

 9 int y2 = Sin_Graph[Interpolate_Index+1].y;

10

11 if (v >= x1 && v < x2)

12 {

13 return (y1 + (v - x1) * (y2 - y1) / (x2 - x1));

14 }

15 Interpolate_Index++;

16 }

17 return Sin_Graph_Default;

18 }

 Eight top code coverage questions | page 18

Figure 7 – MCDC example

About Rapita
Rapita Systems provides on-target software verification tools and services globally
to the embedded aerospace and automotive electronics industries.

Our solutions help to increase software quality, deliver evidence to meet safety
and certification objectives and reduce costs.

Find out more
A range of free high-quality materials are available at:
rapitasystems.com/downloads

Contact
Rapita Systems Ltd.
Atlas House
York, YO10 3JB
UK

+44 (0)1904 413945

Rapita Systems, Inc.
41131 Vincenti Ct.
Novi, Mi, 48375
USA

+1 248-957-9801

Rapita Systems S.L.
Parc UPC, Edificio K2M
c/ Jordi Girona, 1-3
Barcelona 08034
Spain

+34 93 351 02 05

rapitasystems.com

linkedin.com/company/rapita-systems

info@rapitasystems.com

S U P P O R T I N G C U S T O M E R S W I T H :

Rapita Verification Suite:

RapiTest

RapiCover

RapiTime

RapiTask

Engineering Services

V&V Services

Integration Services

Qualification

SW/HW Engineering

Compiler Verification

Multicore verification

MACH178

Multicore Timing Solution

Tools

https://www.rapitasystems.com/downloads
http://www.rapitasystems.com
http://www.linkedin.com/company/rapita-systems
mailto:info%40rapitasystems.com?subject=

